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AIm~at't--Solutiom are found for the Stokes equations of motion for a viw.ous fluid flowing either 
I~lllel or perpendicular to the axes of cylinden in square, rectangular, triangular and hexagonal 
arm~. ~ is done by matchin s a solution outside one cylinder to a sum of mlutiom with equal 
singularities inside every cylinder of an infinite array. Some of the terms in the mlution are 
indeterminate but these indeterminades are resolved. The resulting solutions are several terms of 
a power series in the density. 

High demity spproximatiom are found for the longitudinal case when the cylinders overlap. 
For low densities the mean velocity for transverse flow is found to be independent of oriontation 

cf the array and is Mlf the mean velocity for parallel flow in the same pressure field to several 
orders of magnitude of the volume conceatration of cylinders. 

1. INTRODUCTION 

The theoretical study of the flow of a viscous fluid past a regular array of cylinders 
is part of the wider study of the relative motion of a mixture of a fluid and solid bodies. 
The parallel flow solutions are idealised solutions for the flow through cigarette filters, 
plant stems and around pipes in heat exchange tanks. The transverse solutions are 
applicable to transverse fibrous filters used for cleaning liquids and gases and regulating 
their flow. Both types of solutions are also applicable to the settling of suspensions of long 
thin particles. The high density solutions show some of the properties of flow through 
porous substances. 

This study has also some mathematical interest in that it involves the validation of  some 
indeterminate factors and the use of  analytic continuation around singularities. 

The aim of this paper is to find solutions for several different configurations of  
cylinders. These solutions include both low and high density approximations which match 
up reasonably well at intermediate densities. 

The.parallel flow problem was first solved by Emersleben (1925) for a square array. 
His solution which was based on complex zeta functions is valid only for small densities. 

Happel (1959) employed a very simple approximation called a flee-surface model. In 
this model, the liquid associated with each cylinder is lumped into a concentric cylinder 
with zero drag on' the surface. He derived a formula for the Kozeny constant, which is 
equivalent to a drag force F per unit length of the cylinder, given by 

F =  
4xpU 

i n 0 / e ) -  1.5 + 2e - ½d' 

where U is the average speed of  the fluid and ~ is the fluid viscosity. This T'ormula is 
moderately accurate for small values of  the cylinder density e for a triangular packing. 

tlqbai Tahir shared in the work on square arrays. 
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Sparrow & Loeffler (1959) solved the parallel flow problem for a square and an 
equilateral triangular array by using a truncated variable-sol)arable sohttion which was 
exact on three boundaries of a typical element of a cell of the array and was collocated 
or fitted at a set of points on the fourth boundary of the element. Their results were 
graphed and agreed well with the formulae of Emersleben and Happel and extended them 
up to touching densities. 

Banerjee & Hadaller (1973) minimised S((grad ~b) 2 -  ~)dV, where ~ is the velocity 
potential, with eighth order polynomials and graphed their solutions for the triangular 
lattice for b/2a from 1.01 to 4 where b is the distance between the centres of adjacent 
cylinders and a is the cylinder radius. 

For transverse flow the equations are more complicated. 
Tamada & Fujikawa (1957) studied, on the basis of  Oscen's equations of motion, the 

steady two dimensional motion of a viscous fluid passing perpendicularly through an 
infinite row of cylinders and calculated the drag acting on a cylinder in the row. 

Hasimoto (1959) used Fourier series to calculate the drag force F~ per unit length for 
flow perpendicular to a square grid of cylinders, obtaining 

FI - In(b/a) - 1.3105' 

where U~ is the mean velocity of the fluid. 
He also stated that by using elliptic functions, he had obtained another term 

Ta2/b 2 + O(a4/b 4) in the denominator. 
Happel (1959) used his free surface model to calculate the drag force 

F -- 4n/~U 

In(I/a) - ½ In n - ½ 

where I is the distance between the centres of adjacent cylinders. 
As the shear force is non-zero on the upstream and downstream faces of a cell, a better 

assumption is that of Kuwabara (1959) who started with a model identical with that of 
Happel's but with a vorticity free boundary condition and found the drag force per unit 
length, equivalent to 

F -  4f/~U 
In(l/a) ½ In ~r - 3 / 4  +'~ra2/! 2 + O(a4/! 4) 

Kitsch & Fuchs (1967) tested Happers and Kuwabara's formulae using a regular 
triangular lattice and found good agreement especially with the latter. 

Spielman & Goren (1968) used the dipole approximation to the pressure field and 
represented the effect of other cylinders as an additional body force which they calculated 
to comparable accuracy. 

Gordon (1978) obtained Kuwabara's solution for the stream function and the vorticity 
by using a finite difference iterative procedure. 

Sangani & Acrivos (1982a) used a collocation of cylindrical biharmonics on the outer 
boundary for 10 different values of the density c for both square and triangular arrays. 
For high densities they obtained the lubrication type approximations for narrow gal~. 

They (1982b) extended Hasimoto's method to obtain 

F -  4Jr~U 

-~ In(l/c) - 0.738 + c - 0.887c 2 + 2.038c 3 + O(c') 
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for a dilute square aray and 

F -  
4~r/~U 

1 2 ½ I n ( l / c )  - 0.745 + c - ~c + O(c') 

for a triangular array. 
There is a considerable literature of experimental results reviewed by Davies (1973). 

The above theoretical results for regular lattices do not agree particularly well with the 
experimental results of Sullivan (1942). To overcome this difficulty Yu & Soong (1975) 
proposed a random cell model choosing a spectrum of cell sizes to fit the experimental 
results. 

Other similar transport problems around cylinders occur in electrical conduction, heat 
flow and optics. Work in these areas has been done by Lord Rayleigh (1892), Drummond 
(I 97 I), Ninham & Sammut (1978) and Perrins eta/. (1979) using a method of singularities. 

This paper adapts the method of singularities to biharmonic equations and produces 
some rigorous and reasonably accurate formulae for several different arrangements of 
cylinders, which can be used as a reliable basis for further study of less regular real 
arrangements of cylinders. 

The validity of Lord Rayleigh's method of singularities or images has been questioned 
by Levine (1966), Jeffrey (1973) and Happel & Brenner (1973) because of what they think 
are convergence problems for some of the terms. 

Lord Rayleigh (1892), Perrins et al. (1979) and O'Brien (1979) have, however, described 
ways to calculate these terms. O'Brien's method which involves a Green's integral around 
an enclosing rectangle is adapted to the solution of the fluid flow equations in this paper. 

2. PARALLEL FLOW THROUGH A SQUARE ARRAY 

The description of the square array (figure I) and the justification for the second 
solution are given in appendix I. 

The Laurent series for which w, the z component of velocity, has square symmetry and 
is zero when r = a is 

"  ,ic " ( ) ]  
= - cos 4nO. 

. . ,  L k r /  a 
[i] 

For the multisingularity solution let (r~, ON) be the polar coordinates of a field point 
P(r, O) referred to the centre of another cylinder with centre at (pl, ql) where p, q are 

Q 
Y 

~ B 

Figure I. Square array. 

x 
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integers and ! is the distance between the centres of adjacent cylinders. Apart from a 
constant K, contributed by the outer integral of the Green's solution, the solution with 
identical singularities at every grid point including the origin is obtained by summing 
harmonics over a centrally symmetric square region which is then expanded to infinity, 
and is given by 

w = g - -~g + lim ~ ~, B In( % ~ + ~., B. cos 4nO~ 
, -®p ._ , , . _ ,  \ b . )  , . ,  

where I is an integer. 

[2] 

Matching solutions 
Equations [1] and [2] represent the same function in the domain (all 0, a ~< r < l). Hence 

{ r ® } 
PaZ]4# - ~ B~(r[a)~'cos4nO=K+ ~ B l n ( " ~ +  ~ B _ ( a ~ ' c o s 4 m O n  . [3] 

.-, -,~,,o,o kbM,] .,., -\rM,] 

Matching may be done using a power series in complex variables as follows. 
Let z - re ~, zM - r~ • ~" and d~ - (p + iq)l, then z~ - z - dn and [3] may be written 

a s  

Pa z z 4,, z ® a - -  - - ~ + ~  
4 # - ~ ,  ~. n B~f-'~\a] --~rK+L p~ ~,'0,0 {B ln(l  dM ) ,,-i B ' ( z  - - - ' ~ )  }] '  [4] 

where ~ is "real part of". 
The r.h.s, of [4] may then be expanded as a power series in z and matched term by 

term to the I.h.s. To do this we define a set of constants 

P,, = ~ ~ (lids) ~ = ~ ~. (p + iq)-". 
p,q ~ 0,0 p.q ~ 0,0 

[5] 

For a square grid symmetric in p and q, P, is zero if n is not a multiple of 4. Hence the 
coefficient of z*' in [4] is 

B,, = P , , ( a / l ) " -  ,,,-, Bm (4n)!(4m --- P~.~,,(a/l) ' '+~, n = 1, 2 . . . .  [6] 

Equation [6] can be solved step by step in powers of (aft) to give 

B,,=B(a/i)4,,{ ~ (4n + 3)! 4!(4n)----'~. P, P4,, +,(a/1) s 
(4n + 7)! p,p~+,(a/l)l ~ 

71(4n + 3)! p4psp~+4(a/l)m6+...~ [7] 
+ 3!4!4!(4n)! j 

Determination of P~ 

p,, = ~ (p +/q)_,, = ~ cos 4n(a~tan(q/p)) 

,,,,o.o p,,,o.o ( f  + q2p. 

For large n these series converge rapidly, while for small n we can sum over'p to reduce 
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Table I. Values of P. and Q. for a square grid. 

n Pn Qn 

2 - 

4 3.15121 20021%3895 4 .0 /845  11611 614 

8 4.25577 30353 65104 4.51551 ~4350 320 

12 3.93884 9012 3.88073 08453 

16 4.01569 5033 4.03154 03146 

20 3.99609 6753 3.99219 86989 

24 4.00097 6805 4.00195 41008 

28 3.99975 5875 3.99951 17843 

32 4.00006 1036 4.00012 20739 

36 3.99998 4741 3.99996 94826 

40 4.00000 3815 4.00000 76294 

44 3.99999 9046 3.99999 80926 

4~ 4÷(-1) r41" r+41"2 r+ . .  4 + ( - l l r 8 . 4 - r + 1 6 1 " r +  . .  

double sums to single sums and obtain 

'4 n~ 2 ~ ' ~  3 + 2 S ,  
L., s: ' 

p, = 4__~+ ~ n '  2 ~ *  ,-~", 315 + 420S, +S,,126S,' + 4S,', 

1382nl2 2nl2 ~o 
Pi2 = 638512875 + 15592---'-5 ~ q m l  

155925 + 311850S, + 197505S, 2 + 42240Sf 3 + 2046S~ + 4S, 5 
X Sq 6 , 

etc. where Sq -- sinh ~ q~. The values of P4, arc given in Table 1. 

Determination of B 
For steady flow of fluid in the channel A B C D  of(figure 1), the pressure and shear forces 

must balance. The thrust due to pressure of unit length of the channel is P( !  2 - rm2)/8. 

The only non-zero shear force is on the face CD. This is 

~o /' p ( Ow / Or ), . ,~ = (pS - dO Pa2/2)n14. 

Hence, equating these forces for steady flow, we get 

B = Pt~12,cp. [8] 

Equations [I], [7] and [8] may now be combined to give the flow velocity 

~ = ~ ( ° ~ - , ~ ) +  2--~ in + 

* 

(~  + 3)! P.P.,+,(all)' + "  "~ 
I 

[9] 
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The total flux and drag force 
Using [9], the flux Q over a cell of area ! 2 around a cylinder is given by 

(*~i4 lal/(2coa~ 
Q = 8 Jo dO w(r, O)r dr 

= P! In + I n 2 +  
2n/z 6 2 2 n ( 2 n + l ) ( 4 n + l ) 4 "  +' n - I  

ff, a 2 

+ i2 

+3- \ i / [ - l  +..,~ (- ¥.~ + e,~.T) 
x { 2 +  ~. ( -  1)~2(4n + 7,'P~'+' .~_2[  l"(4n + 3)P~'+'l~ ( / ) " ]  

, . ,  8l(4n + 2)!4" I- 1-- .-,Y" (- ~-.~ j j  + o . 

Three of these series approximate to 3Pd4 or Ps/8 to 8 digit a~uracy. Hence 

Pr [aV n 2 ~2 
Q = 2--~ [ i n ( ! )  - 1.310532926 + n [ j )  --~- ( / ) ' - - -  ( / ) s _  

If we define the superficial velocity parallel to the cylinders as U = flux per cell/total cell 
area, the total force per unit length on one cylinder including pressure on its ends as 
F = PP, and the density of cylinders as ¢ = na2[! 2 and replace the last two calculated terms 
by a geometric series using the Aitken or Pad~ transformation, then 

F = 4npU [10] 

ln (~)  1.476335966 + 2¢ -- ~2~2 -- 0.0509713c'/(1 + 1.51978~ ') 

For a high density approximation we assume that the cylinders overlap, or almost 
overlap, so the walls of the flow channels become the walls of four cylinders with central 
axes distant 1/~/~ from the central axis of a channel. The channels are isolated if the radius, 
a, lies between I/2 and l/V~2. The flow is stagnant in the corners and mainly limited by 
the drag on the parts of the walls nearest to the centre of tt channel. 

To calculate the flux we use three approximations: (a) two terms of the variable- 
separable solution of the Stokes flow equations are used, Co) e/a is small where 
c = I/~/'2 - a is the half gap width, (c) the no-slip wall condition is satisfied only for the 
part of a wall nearest to the centre of a flow channel. 

On one of the four cylinders x - c + y2/2a or r cos O - c + (c2/2a) t a n  2 0 if ( y / a )  is 
small. If the flow velocity, w, is zero on this surface then 

 rc,_ (" + 
w = 4 .  L r 2 -t (3a - c)2c 2 _] 

in the region 

(: n c 1 + tan 2 0 
-- < 0 <  , 0 < r  < cos0 ~ . 

Hence within the above approximations the flux 

Q = ~ -  ~ + ] - ~  + o 
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or 

7.35pU 

F -  [1 _ (~n)~t2~ [ i  + 0.473[(_~)~a _ i ]  + . . . ] "  [II] 

This formula may be compared with the formula for a square channel for which a is 
infinite and the constant 7.35 is replaced by 7.21. Also for a circular channel c = - a  so 
the series (49/90 - 487/1890 + "  -) should sum to n/8. Finally, the approximation must fail 
if a ~ !/2 when the channels join up .so the flow in the corners is no longer stagnant. 

Numerical values from [10] and [11] are listed in Table 5 and compared with values 
calculated from Sparrow & Locffler's (1959) (figure 7). 

Equation [10] is very accurate for small ~ and agrees within 2~o with Sparrow & 
Loeffier's values up to ~ = ~/4. Equation [11] also agrees with these at densities near n/4. 

3. PARALLEL FLOW THROUGH A TRIANGULAR ARRAY 

In this array the solid cylinders are parallel to the z-axis with centres at 
[(p + q/2)l, ~qlv/] ] in the xy-cross section with flow in the z direction. A typical twelfth 
flow cell is ABCD in (figure 2). 

The flow is symmetric about 0A, 0B and AB. The fluid velocity is 

w -  B '  In + .-:.-.- (a - r  :l') + ~ B , , _ _ - _  --  cos 6nO. 
4,u , -  i L \  r /  

For force balance 

B" = ~/3 Pli/4~p. 

For matching to the second form of solution we define 

P'~ = ~, ~., (p + q/2 +/q.~f3/2) - i .  
P4 ~ 0,0 

The values of P~, for the triangular grid are given in Table 2. 
On matching the two solutions we find that 

• a ~ P ~  , , a 12 

Y 

B 

Figure 2. Triangular army. 

X 
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Table 2. Values of P~, and Q~, for a triangular grid. 

n P '  t 
n Qn 

2 -3.62759 8728 

4 0 1.81379 9364 

6 5.86303 1693 5.65680 2871 

12 6.00963 9972 6.03018 4467 

18 5.99971 8358 5.99917 9180 

2 4  6.00001 L648 6.00003 5300 

30 5.99999 9587 5.99999 8768 

36 6.00000 0016 6.00000 0047 

6r 6+(-l)r6/27r÷6/64r¢.. 6÷(-l)z18/27r+24/64r÷.. 

The flux through the hexagon of a rea  V~i2 /2  surrounding a cylinder is 

[ ( ! )  ~2na2 "2a' 2 314 -~ ~ ,]  ((1)24)] 3p!4 in - 1.3930379468 +__ + O 
8n~ 

@ 

If the superficial velocity V = 2 x fltlX]~/3l 2 and ~ = 2na2/v/312, then the total force on 
unit length of a cylinder is 

F = / . \  4n/~U [12] 
I n ( i / -  1.497504970+ 2~ - ~2/2- 0.0025140724~6 +O(e '2) 

For the high density approximation the walls of a channel are parts of three cyfinders. 
In this case c = 3-'/21 - a. For a closed channel 1/2 < a < 3-1:21, 

P [ 2(a+cXc3-r3c°s30) 1 
W - - - - ~  C 2 - r  2 +  3 C ( 2 a - - C )  " 

in the region 

c ( c )  
0 < r < ~ - ~ s  0 l + ' ~ t a n a O  , 

pc4/9V:3 27v/3c ( c )  2) 
4 40 + o  

and for two cells associated with each cylinder 

F = x/~PI2/2, U = 4QIx/~I 2, ~ = 2gaZ/x/~! 2. 

H e n c e  

F = 5'v/3/~U [131 
( I -  ~(3 vr3 e/'rJT[12r] + 2~,~,'~-~)3 / /  25 ~!/2_ 1) + . . . ] "  

Numerical values from [12] and [13] are listed in Table 5 together with values from 
Happers (1959) formula and Sparrow & Loeflter's (1959) figure 7. Equation [12] is very 
accurate for small ~ and agrees within 1% with Sparrow & Loflier's values up to ~ = 0.7. 
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Equation [13] agrees with these values at densities just below the touching density and 
should be better at higher densities. Happel's formula agrees well with the triangular grid 
results at low densities. 

4. PARALLEL FLOW THROUGH A HEXAGONAL ARRAY 

A typical sixth cell is ABCD in (figure 3) and the total cell area is 3~/312/4. 
Half the cylinders have a neighbour in the positive x direction and half in the negative 

x direction so the flow pattern for each half is rotated through ! 80 ° relative to the pattern 
for the other half. There is a 120 ° periodicity in the fluid velocity which is 

For force balance 

We define 

, [ (a ) - ( . ) - ]  (a'-- r ') + .-,~ B: -- a Cos 3nO. 

~ '  ( / ] ~ "  and .~;.= -1  ~ '~  sign(p,q)(/ ' l  ~' p " _  

3. p~, o,o \ MI p~, o.o \ a n ~  

where sign(p, q) is + 1 or - 1 if the grid point (p, q) has grid points around it arranged 
in the same way as the origin or turned through 180 °. The dn are complex coordinates 
of all the grid points of the hexagonal net except the origin. The values of P~ and/5~ 
are listed in Table 3. 

On matching the two solutions we find that 

B:= B'fa'~' [  P~' (3n + 1X3n + 2) z,.~ . /'a'~' 
kl/ 13. 6 ""~+'t, TJ 

[ 5(3n + iX3. + 2) (3. + l) . . .  On + 5) , ,  + 
3 o 

The flux over a cell around a cylinder is 

27Pt'r n \  4r, a' 4n2a ' P;'fa'~S 

1 , a ) / a \  12 

B 

J A k . j /  
Figure 3. Hexagonal array. 
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Table 3. Values of  P~, and ,B~,. 

3 2 .75685  0788 

6 2 .82294  1187 3 . 2 5 7 2 3  9831 

9 2 .99324  1401 2.99324 1401 

12 3.00894 1824 2.99245 4472 

IS 2 . 9 9 9 9 0  9261 2.99990 9261 

18 2.99970 677G 3.00031 8404 

21 2.99999 8576 2.99999 8576 

24 3.00001 1469 2.99998 8889 

27 2.99999 9978 2.99999 9978 

30 2.99999 9585 3.00000 0421 

33 3.00000 0000 3.00000 0000 

36 3.00000 0016 2.99999 9985 

42 2 . 9 9 9 9 9  9999 2 . 9 9 9 9 9  9999  

On replacing the last two calculated terms by a geometric series, and using ~ = 4ra213~/31 = 
the total for~  per unit length of a cylinder is 

F = 4,Euu [14] , 
In - 1.353663936 + 2~ ~- 0,358221P/(1 + 2.26579~ 3) 

For the high density approximation the walls of a channel are parts of six cylinders. 
In this case c = ! - a. For a closed channel i/2 < a < 1, 

in the region 

Hence 

P I (a + c×c* - r ~ ~ s  ~)~  

- g < e <  , 0 < r <  s- 0 l + ~ [ a n 2 0 ,  

Q = PP/293,~ 446./3 c 

p L I'-H~ + 10935 ;+°,Wi J' 
F= 3~/3PPI4, U = 2QI(3v/312), , = 4,a21(3v/312). 

F = 7.54pU . 

" ' "  ' )+ 

Numerical values from [14] and [15] are listed in Table 5 and agree moderately well near 
the touching density of x/3~f3. 

5. PARALLEL FLOW THROUGH A RECTANGULAR ARRAY 

This calculation is done for one shape of rectangle with spacing I in the x direction 
and 2/ in  the y direction. A typical quarter cell is ABCDE in (figure 4). 
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The general equation for the fluid velocity is 

(-0" [(_:),. (r),.] w = B ' l n  +-~ (a2-r2)+..,a'~ - ~ cosT.nO. 

For force balance B ' =  pl2/n#. 
We define 

e~,= ZZ := ZE (P + 2/q)-2" [16] 
p,e tt o.o P4 ~t o,o 

and these are listed in Table 4. 
On matching the two solutions we find that 

- ,  

The sum over the grid for P~' is shape dependent but the Green's integral over the outer 

Table 4. Values of P~. 

2. , ~  2. %;, 

2 1.72879 6454 16 2.00006 5637 

4 2.16645 8253 18 2.00000 0972 

6 2.03110 9507 20 2,00QO0 3407 

8 2.01151 7726 22 2.00000 0059 

10 2.00014 2707 24 2.00000 0241 

12 2.00115 8399 26 1.9~Y)9 9997 

14 1.99995 0307 28 2.00000 0015 

2n 2 + H1 +ooBef) + 4ooe2narclan2 + . . . .  
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boundary is zero if the boundary is a central square. Also for flow symmetry at A 

~ P~ 
n. , -4  "F=I 8" 

This series was used to determine P'2'. 
The value of P'2" may also be obtained by summing over the grid using [16] extending 

equally in the x and y directions, or taking twice as many p's as q's. The sum is positive 
because the density of grid points in the y direction is half the density in the x direction 
but the convergence is rather slow. 

The flux over the rectangle associated with the cylinder is 

{ (1)  l C )  3 3 ,9. 2PId In + ~ In - ~ - ~ arctan 2 + 48 

_ ~ (S/4)'+lP~sin(n + l ) arccos(-- 0.6) na 2 7~2d 4 
~-I  2 n ( n  + IX2n + !)  t 12 1614 

. /a,4F~r (514Y'P~ sin rccos(-0 .6)]  (/)6} 
+'2~1)[4 -arctan2+.-2 ~ ~.a +0 • 

The two series involved in this calculation are divergent but are summed by subtracting 
comparison series 

( - o . 7 5 + i )  , + ,  ( - o . 7 5 + i y '  
and 

n - I  R - 2  

where J" means the "imaginary part of". 
The flux is 

2P!  4 

- 2 l  ] 6 / 4  \7/ 7 " 

Table 5. Values of F/#U for parallel flow for various grids and formulae. S k L means Sparrow 
& boe~. (figure 7). 

F/~u 

Hgpy41 Is Trigagular grid 
fo t lu l s  Eql2 Bql3 S ~ L 

0 0 0 

0 .1  12.6 12.6 

0 .2  2S.7 2S.S 

0 .3  48.5 4g.1  

0 .4  92.2 g0 .6  

0.S 184 178 

0 .6  4O8 378 

0 .7  1076 g06 

,/4 
0.8 311~1 2S24 

0 • g 34900 8270 

w/2~" 90~g 

1.0 * 

~,/s,,T 
s/2 

4 r / ] , ~  

squu~ 8 r~  Hu. 8 r~  
klO Iqll S I L uq14 UqlS 

348 

900 

26,$6 

9844 

1090g 

SS90@ 

4.4 

12.4 

26.3 

48.1 

90.7 

177.2 

M3 

g02 

21,60 

10300 

11100 

0 4 .4  0 

12.3 12.4 11.0 

24.S 24.S l J . 2  

44.S 4 5 . |  31.7 

?0.2  ~J .S 47.0  

141 140 142 70.0 

2S7 3~1 n41 10G.4 

10~.0 

476 488 4711 141 
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and the total force per unit length of the cylinder is 

F = 4~/~U 
In(l/~) - 1.12976238 + 2e - 1.197317¢ 5 + 0(~3)" 

This is the most irregular arrangement allowing enhanced flow through the wider channels. 

6. CONCLUSION FOR PARALLEL FLOW 

The drag calculations for the four arrangements of cylinders have an order of accuracy 
ranging from ~2 for the rectangular array to ~6 for the triangular array and may be used 
from low to moderately high densities. They also match up reasonably well with the high 
density calculations and with Sparrow & Loefl]er's results. 

It must be emphasised that these are regular arrangements which completely ignore 
boundary or wall effects and asymmetry of any vessel containing the cylinders. 

At very low densities, when In(l/e) is large, Happers simple cell model is a good 
approximation for the triangular grid. 

With zero drag on the outer cell wall the force balance gives the constant, "B, in the 
general solution such as [1]. Thus B = P x (cell area)/2n/~ independent of  the arrangement 
of cylinders. Furthermore the velocity near a cylinder is 

w- 
P x (cell area) 

2~/~ 
In + ~ (a s - r~). 

The drag on unit length of a cylinder when the superficial speed is U arid the density of 
the cylinders is ¢ is F -  2~l~U/(ln(l/~) - K) where K is close to 1.5. This suggests that the 
cylinders may be regarded as drag elements almost independent of  their geometric 
arrangement and dependent only on their volume concentration. In the more refined 
calculation K is a maximum for the most compact triangular arrangement which is very 
close to the value given by Happers (1959) model while a smaller value of K occurs when 
the gaps have a range of sizes. Thus a reasonably accurate empirical formula for the drag 
force may be constructed in the form 

F = 4x/~U 

In(l/e) - K + 2e - 2  ~2 

where K is determined experimentally and is a measure of the regularity of the 
arrangement. 

7. TRANSVERSE FLOW PARALLEL TO THE SIDES OF A S Q U A R E  G R I D  

Description 
We use the same arrangement of cylinders as in section 2 and appendix 1. 
Let the fluid have a mean velocity U in the x direction with zero velocity on the cylinder 

walls and be driven by a pressure gradient - P, in the x direction. Let the fluid flow satisfy 
the Stokes equations, 

div v = O, gradp = ~V%. 

If v = curl(O, O, •) then V~p = 0 and V4Z = O. 
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Y 

Figure 5. General transverse flow for a square array. 

First solution 
The general solution in polar (r, 0) coordinates symmetric about the y-axis, anti- 

|symmetric about the x-axis, bounded in a ~ r < ! with zero velocity when r = a is 

[17] 

and 

a2{ ( ( r ) '  2 r a] C(-~ / r) 2r ~]} 
X = ~  A - a + r  + In + a  s in0  

a2 A - 1 2 
+8--~,~{ ~ - ~ ( r )  2'+' 2 n + l ( a ) Z ' + ' - ~  (n + IX2n ÷ 1) 

[ 1 /r~Z'+l+l(a~ z'-I 
+ c. ,,(~.,+ l) \~/ ~ ~,7/ 

2 / a \ 2 " + ' - I  "1 . 

2. + , / r )  Jj~n(z~ + l)O, 

with polar velocity components 

1 0X aX 
V,=r~, v,= -Or" 

c B 

D 

0 E A 
Figure 6. Typical quarter cell for a square array. 
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Second solution 
This is justified in appendix 2. If the boundary conditions arc such as to produce a 

periodic flow pattern then the pressure and stream function will have identical singularities 
inside every cylinder with constant and linear terms determined by the outer mechanism 
producing the flow. 

Let P be a point in the flow field with polar coordinates (r, 0) and complex coordinate 
z - re a. Let the centre of each cylinder with coordinates (pl, ql) have a complex coordinate 
d~ - b~ e I°" - (p + iq)l where p and q are integers. Let the complex coordinate of the point 
P referred to this point be zpq - rm e ~',', then z~ - z - d~. The second solution can be written 
a s  

P = P ° +  a~{ K z +  , -0p ~ ' ~ q  C'(a/zn~+'}" [19] 

a 2 2z~  In + 2a 
- o  

.[ - 

- ( + cI-:  + 
u .n T. " 

[20] 

where ~t stands for "real part of", jr  for "imaginary part of" and K, X0 arid H depend 
on the outer integral. 

We now equate [17] and [19] for the pressure and cancel those singular terms which 
come from the central cylinder leaving 

:C A,O/a~ "÷' = r~ + ~ y .  c .  [2q 
n-O m-O p,¢#O,O 

This is now true for all z and not just the real part. 
The r.h.s, may be written as a power series in z convergent for Izl < [least d,d = ! and 

equated term by term to the left hand series. 
As in the case of parallel flow we define 

e . =  ! " = Z E  e - "  = E E  O, + ~,)-" 
P4 ~' 0,0 \ u t q /  p~ ~, 0,0 

and in addition 

"-' ( T '  a . /  l 
Q.=  T.E d . ~ _ ,  = Y.Y. ~ -  e - ' , ,  -- E E  (p - iqXp + ~) - '÷ ' .  [221 

I,¢,~0,0 I¢ .P4~O,O \ u P t /  ,04"# 00 

For a symmetric grid P~,+ t = Q~,+t = 0 while Pz, and Q2, are real. Hence the coefficients 
of (z/a) 2"+1 in [21] give the set of relations 

Om + 2,. + 1)! p~.+~.÷, ( , g "+~ '÷ '  
A. = - ~ C. (2,.)!(2. + 1)! ~,7) n = 0, 1, 2, . . . .  [231 

m - 0  

if we absorb K into ,4o and adjust P2 accordingly. 
Similarly, if we write [! 8] as the imaginary part of a complex function of  ~ and powers 

of z, expand out [20] and equate coefficients of  iz ~' +l we recover [23] again. The coefficient 
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of z 2", however, gives us 

a 2n 

+ o c .  (2n + l)! {2m + l)! " (2T , -  i~!(~,,~¥~)i_1 

n = 1,2,3 . . . .  [24] 

Equations [23] and [24] may be solved step by step in successive powers of (a/l) to express 
A. and (7. as multiples of Co giving us 

..,._, (!)~' (a)' (a)' 
Co -- - e~  + n ( ~  + 1)(P2 + 2Q4)P~,+, ~- - 8n(2n + I)P4P~,+2 7 

+ I-n(n + IX2n + IX2n + 3) (P4 + 4Q6)P~,+4 

I , 6 ,](/), (_:),o 
- 3n(2n + I)P2.+,(P, P4+4(P2.+ 2Qa)Q + O [25] 

and 

Co ~al 
<a)' = -- (e~, + 2nQ~,+2) + dm(n + 1)P~,+ 7 + [n(2n + 1)P2P~,+2 

(o)'[ 
+2n(n  + l)(2n + I)(P2+2Q4)Qu+4] ~ - 16n(n + l)(2n + I)P, Qu+4 

](a)' -4 4n(n + l)(n + 2X2n + 3) (/2 + 2Q4)P~, +4 7 
3 

+ In(n + lX2n +2 3)(22n + 43) P4Pz~ + 4 + n(n + IXn + 2)(2n3 + IX2n + 3) 

x (e4 + 4Q6)Q~,+6 - 3n(2n + IXP2 + 2Q6)P4P~,+2 

](-;1' (-;1 '° - ~ ( n  + l ) ( ~  + I)(P2P, + 4(P2 + 212,)12, Q 2 . .  + 0 

8. DETERMINATION OF P. AND {2. 
P. and Q. are defined by [5] and [22]. For a square grid P2 and Q4 are indeterminate 

because they depend on the order of summation when we neglect the outer integral. They 
may be deduced indirectly from symmetries of the pressure and velocity fields or by 
extending the grid infinitely more perpendicular than parallel to the flow. The other P. and 
Q .  are all zero if n is not a multiple of 4. The non-zero values are listed in Table I. 

Apart from P2, the P.'s are the same as for parallel flow. The early P.'s and Q,'s may 
be evaluated by summing first over p or q. P,, P, and Pn have been 8ive~ previously and, 
if Sq = sinh= qn, then 
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7[ 2 2.qn coth qn - i 
Q4 = T + 2n2 

II~lLd Sq ' 
2n e 2n 6 ® 2qx coth qn(2S ,  2 + 30S, + 45) - 6S, 2 - 45S, - 45 

Q' = + Z., s ; 

The other Q,'s are obtained by direct summation over the grid. 

9. CALCULATION OF Co 

Consider the x-component of the Stokes cqm~tion, 

and 

c~p/ax ffi ~V2u 

where S is the interior of the section A B C D E  in (figure 6). On integrating over one 
coordinate, this converts to a boundary integral, balancing pressure and shear force .  

By using [17] and [18] and the same method as for finding B in [8] we obtain 

Co ffi - Pl2/2na. [27] 

10. CALCULATION OF P2 AND Q4 

P2 and Q, are defined as 

and 

P -- -- 12 cos 2~ M p2 _ q2 
2=LL =,,EE, 

12 COS 4~ M • V p4 -- 6p2q2 + q4 

The first sum is indeterminate, ranging from - n if we sum over q first to + n if we sum 
over p first. The second is also indeterminate ranging from 4.08. .  if the sum is taken over 
p or q first to - 0 . 9 4 . .  if the grid is first summed at 45 ° to the axis. 

Lorg Rayleigh (1892) first encountered this difficulty in his conductivity calculations. 
He chose P= = - x and used a physical argument to justify his choice. However, we can 
find P2 and Q4 by using two symmetries of  the flow field. 

By symmetry, the pressure at A (r  - I]2, d - O) is Po - P l /2 .  Hence, on substituting the 
coordinates of A in [17] for the pressure and using [25] and [26] we obtain 

- - '2 "=  / 4 . , ' ~  " 

On substituting for Co from [27], we get 

1'2 = - 2n  + 4 - 4 ~ .  (P4,/16") - -  - n 

n - - I  

to at least 10 decimal places. 
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From considerations dealt with in appendix 2 the boundary integral contributes 
nothing to P2 if the grid forms an infinite slab perpendicular to the flow. We may, therefore, 
obtain the same value for P~ by using the original definition and summing over q first 
before p. This results in the expression for P2 given near the end of section 8. 

We may determine Q4 from one of the velocity symmetries at A, B or C where the 
velocity components have either maxima or saddle points. To obtain a rapidly convergent 
series for Q, we use the saddle point of v, at A (r = !/2, 0 = 0), which gives 

krO0/=O" 
On substituting [18], [25] and [26] in this equation we find that it is satisfied if 

Q, = 4 - ~. (2n + I)Q~+416-" + ~'. (2n - l)P.4'-~ 
n ~ l  n- - |  

= 4.0784511611614.. 

"l~tis number can also be found from the original definition of ~ if we sum over the grid, 
first completely over p then q, or q then p, but not in any other order. The resulting 
expression for Q4 is given at the end of section 8. 

11. THE FLUX AND AVERAGE VELOCITY 

The flux through the representative quarter cell in figure 6 is the flux across DC or AB.  
The stream function, X, is zero along D E A  so the flux is the value of X from [18] at 
C(r = 1/2, 0 = n/2) or at B(r  = l/~/~, 0 =  n/4). Ifwe substitute for A, and C, from [25] and 
[26] the resulting series at C are more rapidly convergent than the corresponding series at 
B. The mean fluid velocity across the whole cell is obtained by dividing the flux by the 
quarter cell width !/2. The  mean fluid velocity so calculated is 

pl 2 

4rip 
On(I/a) - 1.310532927 + ga2/l 2 - 8.75573387(a/I) 4 + 63.21721610(a/I) ~ 

- 235.MO7557(a/l) s 4" O(a/l)'°]. 

This is found to agree very closely with 

PI2 in(i/a) - !.310532927 + x - + 4P,(P2 + 2Q,) 7 
4~/4 4 

19 a s 
- ' ~  P2P4(P2+ 2 Q , X ~ ) +  O(/)  '°]  [28] 

As the density of cylinders is r, a2/l" the mean velocity is 

U = ( F / 8 ~ l z ) [ l n ( I / e )  - ! . 4 7 6 3 3 5 9 7  + 2~ - -  1.77428264~ 2 

+ 4.0777~.A.A.: ~ -- 4.8422740~ 4 4" O(~)] [29] 

where F -- P! 2 is the force on unit length of a cylinder. 
The first three terms in [29] are half the corresponding terms for the parallel flow. They 

agree with Hasimoto's (1959) and Sangani & Acrivos's (1982b) terms and ;;how that 
Kuwabara's & Happers approximations are also good at low densities. 
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Figure.7. General transverse diagonal flow for a square array. 
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Equation [29] adds one more term to Sangani & Acr/vos's low density formula and 
gives the coefficients to eight decimal instead of  three decimal accuracy. It may also be 
improved by replacing the last four or five terms by their Pad~ approximant. Hence 

U = ~ Fin(l/~) - 1.47633597 + 2~ -- 0.79589781E 2 1 
8n/~ L I + 0.4~19"~'4~ --- ] . ~ 6 9 4 2 ~ 2 . J "  

[30] 

This is very accurate for small ~, agrees with Sangani & Acrivos's (1982a) collocation 
calculations within 0.3% when e - 0.2, 4% when E - 0.3 and deteriorates rapidly thereafter. 

12. DIAGONAL TRANSVERSE FLOW THROUGH A SQUARE GRID 

The tensor form of Darcy's equation is u~ -- auap/ax j. Using symmetry arguments it can 
be shown that for a square grid a~2 -- 0 and a~t = a=. Hence the Darcy law permeability 
is isotropic for a square grid. 

For flow at 45 ° to a square grid a typical half  cell of  the flow is OABC in (figure 8) 
where OB =/ .  With the exception of  [22], [17]--[26] apply. For P, and Q, in [22], the grid 
of cylinder centres has been rotated through 45 ° so Pin and Qs, in Table 1 are unaltered 
and Pk+4, Qk÷4 reverse sign. Integration of  the Stokes equation over the half cell 
EAGFCD in (figure 8) for the force balance again gives us Co = -PIZ/2na. By symmetry 
the pressure at H is - P l / 2 ~ .  If  we calculate this, as before, from [17], [25]-[27] we find 
that P2 is again - ~. Similarly, if av,/ar = 0 at H and A while ave~at -- 0 at H and C, we 
find that (P2 + 2Q~) reverses sign. Hence for diagonal flow 

Q4= - 0.936858510. 

,F 

E 

Figure 8, Typical half cell for a diagonal square array. 



534 J.E.  DRUMMOND and M. L TAmlt 

The mean fluid velocity across the half cell in (figure 8) is x/~Xc/i or 2x/~xs/l. The series 
for the second expression is more rapidly convergent and the calculated mean velocity is 
identical, at least to order (a/i) s, with the mean velocity parallel to the sides of the square 
array as calculated in section 11. 

13. F L O W  A C R O S S  A T R I A N G U L A R  A R R A Y  

We first consider an array whose cross section is an equilateral triangular grid with flow 
in the direction of a nearest neighbour, as in (figure 9). A typical quarter cell of the flow 
is OABC in (figure 10). In calculating P~ and Q',  the centres of the cylinders with spacing 
I have coordinates [(p + q/2)l, ~/3ql/2]. The grid is unchanged by a rotation of 60 °. Hence, 
apart from P~ and Q~, P', and Q" are zero unless n is a multiple of 6. P~ and O" can be 
deduced by using the symmetries of pressure and velocities at A, H or C. A and H being 
equidistant and closest, to 0 yield more rapidly convergent series. 

The force balance integral gives 

Co -" -- xfl3plzl4r~a. 

,Calculation of the pressures at A and H gives a series, 

P~--- - -4Tr/V/3+4--4  ~ Pe~/64"= -2nw/~.  
n- - I  

Futhermore, 8vdSr - 0 at A and H if Q[ - ~r/s/3. 
The values of P~, and Q~, are found by summing a double series similar to [22] over 

the triangular grid. P~, are the same as for longitudinal flow. The values of P~ and Q~ may 
also be obtained by summing over q before (p + q./2). The values of  P-' and Q: are listed 
in Table 2. 

Let C, = cosha = v/3q [2 and S, = sinha xvI3q /2 then 

' :  2 ~ ' E  ± +  2,: 5:. ~=-2,uJ~, 

, 2n'  2 ~ ' - -  1 5 - 1 5 < + 2 C ~  2*'  . 1 5 + 1 5 S f + 2 S ~  
" = ~ + %-,~ c; ~5 ,.,..E st ' 

• na 2n'- ,.v/r3q tanh(tt.v/3q/2)- I ,.v/r3q ¢o~(nx/3q/2 ) -- I 
Q'=3-- E +2,,' E , 

. ~  G , . . ,  s,  

J ~  

Figure 9. General transverse flow for a tr iangular  array. 
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C F B 

E A 

Figure I0. Typical, half cell for a triangular tray. 

n' 2n 4 ~. n~//'3q tanh(n~//3q/2XC~- 3 ) -  2Cq + 3 

Q6=~+ 3 ,~u c, 

2;P E 3 + 2S,-  n,~l~q coth(n~/3q/2)(3 + S,) 
+ 3 ,~ S 2 , 

The mean velocity across the cell is 2Xc/ .~l  or 4Xd~/]I and is given by 

F {ln(i/a) -1.393037947 + 3.62759878 (a/I) 2 

- 3.289868133 (all) 4 - 63.99883744 (a/i) s 

+ 795.9843482 (a/l) m - 3683.869236 (a/i) n + O(a/i)~4}. [311 

The last five coefficients are very close to 291,~/3, nZ/3, 2Q~ 2, 24P~Q'6 and 
(10P~Q~ - 433P~/6)P~ respectively. 

As the density of the cylinders is 2na2/v/312 and the last three terms appear to belong 
to an almost geometric series we replace the last two by a geometric series. Then 

U = ~ In - 1.497504972 + 2~ - ~- - 0.739137296~ 4 + 
2 . 5 ~ 1 8 ~ 1 ~  s 

1 + 1.275793652~ 

[32] 

The first four terms are half the corresponding terms for longitudinal flow while the 
second term disagrees slightly with that of Sangani & Acrivos (1982b) and three new terms 
have been added to their result.- 

This formula is very accurate for small ~, agrees with Sangani & Acrivos's (1982a) 
collocation calculations within 0.1~ when ~ = 0.3, 1.3% when ~ .-0.4, 10°//o when e = 0.5 
and deteriorates rapidly thereafter. 

14. FLOW DIRECTION TURNED THROUGH 30" 

This flow direction bisects lines joining two nearest neighbours and is illustrated in 
(figures I I and 12). The rotation of the grid changes the signs of P~,+s and Q~2,+6 and 
leaves P~, Q~, P~2, and QI2, unaltered. These changes alter the pressure and velocity fields 
but the mean velocity, as given by [31], is unchanged. 
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Figure I1. Second flow pattern for a triangular array. 

F 

E 

Figure 12. Second typical half cell for.a triangular array. 

15. CONCLUSION 

The most compact arrangement of cylinders is the equilateral triangular array. By 
comparing [29] and [32] for small densities we see that the mean .velocity through a 
triangular grid is slightly less than the mean velocity through a square grid of equal density. 
On the other hand when the cylinders touch flow ceases for the square array when 1 = 2a 
or the density of cylinders is n/4 and it does not cease for the triangular array till a higher 
value of the density is reached. 

Of the two simple cell models that of  Kuwabara is better. 
If we compare the transverse and longitudinal flow we see that the drag for transverse 

flow is twice the drag for longitudinal flow with a deviation of order (all) 4 for the square 
array and (a/l)' for the triangular array. 
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A P P E N D I X  I 

The method of singularities for parallel flow through a square array. 
Following O'Brien (1979) we may set up Green's integrals for the pressure and velocity 

fields and by using two different domains set up two equivalent sums for the pressure and 
velocity. These two sums can be equated to deduce the unknown coeflici~ts in the sums. 

Description 
Let the medium contain solid cylinders of radius a with axes parallel to .the z-axis 

arranged in a square lattice with centre lines cutting the xy-plane at points with 
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coordinates (pl, ql) where p and q are integers. For separate cylinders a must be less than 
q2. 

In a real flow situation the cylinders would form a finite cloud or be contained within 
the walls of a tank. However to avoid these wall or boundary effects we assume the solution 
is completely periodic. This can be achieved by containing the cylinders or their circular 
cross-sections within four slippery walls at x = ( / +  ~)!, x = - ( J  + ~)l, y = (K + ~)1, 
y = - (L + ½)1 where I, J, K and L are integers. If  w is the fluid velocity in the z direction 
and n is the outward normal, Ow/On ffi 0 on these walls. 

If this solution is to be tested inside a tank with no-slip walls, such walls would need 
to be positioned carefully somewhere near the next outward row of  cylinders so as to cause 
minimum disturbance to the flow around all but the outer layer of  cylinders. 

The Stokes flow equations reduce to the two-dimensional equation 

V'w = - P/~ 

in the region between the circles and the outer rectangle. 
Using rectangular and polar coordinates, let P be a fixed point with coordinates (x0, Y0) 

or (r0, 00) in the flow region just outside the circle centred at the origin. Let Q be a variable: 
point with coordinates (x, y )  and (r, 0) or with coordinates (r,, 01) with respect to each of  
the grid points with address i and polar coordinates (b,, ~L). The boundary conditions are: 
w = 0 on each circle and Ow/On ffi 0 on the rectangle. Hence uniqueness is guaranteed by 
the uniqueness theorem for the Laplace equation. 

From periodicity and square symmetry, w is of  the form Y-~-0 w, cos 2 n ~ / l  when y is 
(K + ~)1 or - ( L  + ~)1 and 2~7.0 w, cos 2n~y/i when x is (I  + ~)1 or - ( J  + ~)1 and Ow/On is 
of  the form Y,%0 a, cos 4n0iand is the same on every circle. Furthermore the constants g, 
and w, are unique. 

We may now find two expressions for w using a simple Green's function, 

I p2 G (x, y, xo, Y0) = ~ In p where ffi ( x  - x.0): "k ( y  - y0 )  2 

and the Lagrange identity 

wF'2G - GV2w = div(w grad G - G grad w). 

When integrating over the flow region V with an outer surface SR and cylinder surfaces 
S, with 

V'G ffi ~5(x - xo~(.v - yo) and V2w ffi - P/l~, 

we divide V into its basic square cells around each of  the circles and call these I,'1. Hence 

l f s O l n p  ~ { f f v ,  P l n p  fs, lnpOw } w(xo, yo) = ~-~ w ~  dS,- ~ dV, + 2n O'~n, d$' " 
It 

In the integrals over each circle and its associated square, the dominant  term from the 
circle is - aoa in b, while - P(! 2 - a 2) in bJ2z/~ dominates the surface integi, hl. The sum of  
these terms will not diverge if 2r, a/mo -- - P(! 2 - r, a2). 

The physical interpretation of  this condition is that the shear on each cylinder is in 
equilibrium with the fluid thrust on its associated cell. 

The integral over the outer rectangle is equal to w0 plus smaller terms. 
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If xo, yo, ( I - J )  and ( K -  L) are non-zero the integrals will contain linear and 
quadratic terms in these variables. However, since w(xo, yo) is unique its value will be 
independent of the shape of the region over which we integrate. Hence the integral over 
the outer rectangle will cancel any shape dependent terms from the other integrals and may 
be interpreted as the sum of contributions from additional circles and cells and the sources 
of pressure and flow outside the rectangle. 

If we wish to eliminate the integral over the outer rectangle we make it into a large 
square with I = J = K = L and let I tend to infinity leaving us with an unknown constant, 
a term -P(x~,  y~)/41z and a sum of harmonic terms with singularities of the same type 
and size at the centre of each circle. Their sum will converge if the pressure and shear forces 
balance. 

We get a second solution if we contract the rectangle to a single cell of side I with 
I = J = K = L = O. For the Green's integral around the inner circle and the surface up to 
radius r0, i f r  0 < 1/2, p may be expanded as a power series in (r/ro) giving the same singular 
terms at the origin of r0 as before. For the rest of the surface integral and boundary integral 
for r > r0, p is expanded as a power series in (ro/r). Hence the contributions from sources 
outside r0 reduce to a set of harmonics with positive powers of r0. These combine together 
~o form a Laurent series. 

The restriction r0 > I]2 is artificial because the Green's integral can be carded out with 
any shape of contour. If we stretch the outer square with appropriate changes to w and 
Ow/On on the boundary, the first singularities are encountered at the centres of the four 
neighbouring circles at radius l. Hence the Laurent series will converge between radius a 
and radius I. 

Finally, w(xo, y0) is unique, so the Laurent series and symmetric sum of harmonics 
singular at the grid pointsdiffer only by a constant which comes from the outer integral. 

A P P E N D I X  2 

The method of singularities for transverse flow through a square array of cylinders. 
Using the same grid as for parallel flow and the Stokes equations as in section 7 the 

boundary conditions on the simply connected quarter cell ABCDE in figure 6 for flow in 
the x direction driven by a pressure gradient, - P ,  are as follows: 

OnAB p=p0- -P l / 2 ,  Ou/Ox=O, v=O,  O~/Ox=O, OI72X./Ox=O 

~y = O, Ou/Oy = O, v = O, X = IU, ['2 x = On BC 0 

On CD p = Po, Ou/Ox = O, v = O, OX/Ox = O, OV'Z/Ox = 0 

On DE, u = O, v = O, z = O, 0 x/Or = O 

op 
O n E A ~ = O ,  Ou/Oy=O, v=O, z=O,  V2z=O 

oy 

where U is the average velocity. The equations are Laplace and Poisson equations with 
no boundary condition for p on DE and reduce to a biharmonic equation for Z with mixed 
double boundary conditions on all sections of the boundary. 

Given X on CD and the existence theorem for the biharmonic equation or for Stokes 
flow as in Ladyzhenskaya (1969), x is determined umquely and so u, v and p may be found. 
Alternatively, if we are given P we can rescale U accordingly and Jind all the field 
quantities. 

With square symmetry, grid periodicity and uniqueness of the solution, the unknown 



540 J.E. DRUMMOND and M. 1. TAHIR 

functions or their normal derivatives on the boundaries are expressible as unique Fourier 
series in x, y or 0, though we do not yet know the coefficients in these series. 

Using the Laplace and Poisson equations for p, u and v and the same Green's function 
as before we obtain Laurent series by integrating over the cell at the origin and second 
solutions which are sums of harmonics and biharmonics with identical singularities at each 
grid point plus a boundary integral over the rectangle, Ss. 

Because of uniqueness the boundary integrals cancel any shape dependent terms in the 
sums and in particular there are no terms with odd symmetry if the grid is symmetrical 
(I = J and K -- L) and the grid sums converge if the pressure and shear forces balance. 
There remain two shape dependent constants/'2 and Q4. The contribution to these from 
the outer boundary integral is zero if K ~, I. Otherwise we may determine these when we 
equate the two solutions by using the conditions that there are saddle points and maxima 
at A, B and C in (figure 6). 
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NOTATION 

cylinder radius 
distance between adjacent cylinder centres 
polar coordinates of the cylinder centres 
polar coordinates of the cylinder centres 
density of cylinders, solid fraction 
cosh' rc ~f3q l2 
complex coordinate of a grid point 
force per unit length on a cylinder 
distance between adjacent cylinder centres 
integers 
pressure 
pressure gradient in the x direction 
defined grid constants listed in Tables !--4 
flux of fluid through a cell 
polar coordinates from the origin 
polar coordinates from (pl, ql) 
sinh 2 qn for the square grid or sinh 2 n~f3q /2  for the triangular grid 
mean fluid velocity (flux/total area of a cell) 
x and y components of velocity 
vector velocity 
polar components of velocity 
velocity parallel to the z-axis 
complex coordinates 
polar angles of cylinder centres 
density of cylinders, solid fraction (l-void fraction) 
azimuthal angles 
viscosity 
Banerjee's velocity potential 
stream function 


